University

## Applications of Differentiation By Danang Mursita

## How to Sketch the graph of function

1. The X-intercept and Y-intercept
2. Intervals of monotonic and extreme points
3. Intervals of concavity and inflection points
4. Asymptotes

Assume $y=f(x)$.
Point of intercept between the function and the axis, i.e:
$X$ - axis if $y=0$ and $Y$ - axis if $x=0$

Example :
Find the intercept point of function $f(x)=x^{2}-3 x-4$ with the axis
2. Intervals of monotonic and extreme points (1)

The interval of monotonic of $y=f(x)$ :

1. Intervals of increase,
$f(x)$ is increasing on the interval if at any point $x 1$ and $x 2$, in this interval, we have $f(x 1)>f(x 2)$ for $x 1>$ x2
if $f^{\prime}(x)>0$ on $(a, b)$ then $f$ is increasing on $(a, b)$
2. Intervals of decrease,
$f(x)$ is decreasing on the interval if at any point $x 1$ and $x 2$ in this interval, we have $f(x 1)>f(x 2)$ for $x 1<$ $x 2$.
if $f^{\prime}(x)<0$ on $(a, b)$ then $f$ is decreasing on $(a, b)$
3. Intervals of monotonic and extreme points (2)

http://danangmursita.staff.telkomuniversity.ac.id/

## Examples

Find the intervals of monotonic of this functions 1. $f(x)=x^{2}-5 x+6$
2. $f(x)=5+12 x-x^{3}$
3. $f(x)=x /\left(x^{2}+2\right)$
4. $f(x)=(x-1) /(x-2)$
5. $f(x)=8 /\left(4-x^{2}\right)$
2. Intervals of monotonic and extreme points (3)
(Relative) Extreme Points :

1. Maximum point, $(x 0, f(x 0))$
$f$ have (relative) maximum at $x 0$ if $f(x 0) \geq f(x)$ for all $x$ in some interval containing $x 0$
2. Minimum point, ( $x 0, f(x 0)$ )
$f$ have (relative) minimum at $x 0$ if $f(x 0) \leq f(x)$ for all $x$ in some interval containing $x 0$
3. Intervals of monotonic and extreme points (2)

4. Intervals of monotonic and extreme points (4)
(Relative) Extreme Points of $y=f(x)$ can be found by two methods i.e : (Assume xo such that $\left.f^{\prime}(x 0)=0\right)$
5. The first derivative,

- if $f^{\prime}(x o)>0$ on an interval extending left from xo and $f^{\prime}(x 0)$ $<0$ on an interval extending right from xo then $f$ has (relative) maximum at xo
- if $f^{\prime}(x o)<0$ on an interval extending left from $x o$ and $f^{\prime}(x 0)$ $>0$ on an interval extending right from xo then $f$ has (relative) minimum at xo

2. The second derivative

- If $\mathrm{f}^{\prime \prime}(\mathrm{xO})>0$ then f has (relative) minimum at xo
- If $f^{\prime \prime}(x 0)<0$ then $f$ has (relative) maximum at $x 0$


## Examples

Find the extreme point and classify them as maximum point or minimum point

1. $f(x)=x^{2}-5 x+6$
2. $f(x)=5+12 x-x^{3}$
3. $f(x)=3 x^{4}-4 x^{3}$
4. $f(x)=x(x+2)^{2}$
5. $f(x)=\left(x^{2}-3\right) /\left(x^{2}+1\right)$
6. $f(x)=x^{2} /\left(1+x^{2}\right)$

## 3. Interval of Concavity (1)



- The curve lies below its tangent lines $\square$
- If we travel left to right along this curve so the slope (gradient) of tangent line decrease


The curve lies above its tangent lines

- If we travel left to right along this curve so the slope (gradient) of tangent line increase


## 3. Intervals of concavity (2)

Let f is differentiable on interval I
a. $f$ is called concave up on interval I if $\mathrm{f}^{\prime}(\mathrm{x})$ is increasing on interval I
b. $f$ is called concave down on interval I if $\mathrm{f}^{\prime}(\mathrm{x}) \quad$ is decreasing on interval I

Second derivative test for concavity

1. If $f^{\prime \prime}(x)>0$ on interval I then $f$ is concave up on I.
2. If $f^{\prime \prime}(x)<0$ on interval I then $f$ is concave down on I.

## Problems

## Find the interval concavity of

1. $f(x)=2 x^{5}-15 x^{4}+30 x^{3}-6$
2. $f(x)=\frac{x^{2}-3 x+1}{x-3}$
3. $f(x)=\frac{x^{2}-2 x+1}{x-2}$
4. $f(x)=\frac{(x+1)^{2}}{x}$
5. $f(x)=x^{1 / 3}$

## 4. Inflection Point (1)

Telkom


Let $f$ is continuous on an open interval containing $x=b$.
If $f$ changes the direction of its concavity at $x=b$, then point ( $b, f(b)$ ) on the graph of $f$ is called an inflection point of $f$.

## 4. Inflection points (2)

Theorem : The function of $f(x)$ has an inflection point at $x=$ b if :
$\square f(x)$ has the second derivative at $x=b$ such that $f^{\prime \prime}(b)=0$ $\square f(x)$ has not the second derivative at $x=b$ or $f^{\prime \prime}(b)$ is not defined

## 4. Inflection points (3)

How to find the inflection Point of $f(x)$ :
$\square$ Find $x=b$ such that $f$ " $(b)=0$ or $f^{\prime \prime}(b)$ is not defined.
$\square$ does $f(x)$ change the direction of its concavity at $x=b$ ? If $f(b)$ is defined and $f(x)$ changes the direction of its concavity at $x=b$ then (b,f(b)) is inflection point of $f(x)$.
Example : find the inflection point of

1. $f(x)=x^{3}$
2. $f(x)=x^{4}-1$
3. $f(x)=x^{1 / 3}-2$

## Problems

Find the inflection points of

1. $f(x)=(x+2)^{3}$
2. $f(x)=x^{4}-8 x^{2}+16$
3. $f(x)=x /\left(x^{2}+2\right)$
4. $f(x)=3 x^{4}-4 x^{3}$
5. $f(x)=x^{4 / 3}-x^{1 / 3}$
6. $f(x)=x^{1 / 3}(x+4)$

## 5. Asymptote (1)

- Definition : the line is said as an asymptote of $f(x)$ if the curve of $f(x)$ tends toward this line.
- The kind of asymptote

1. Vertical asymptote $(x=a)$
2. Horizontal asymptote $(y=b)$
3. Oblique asymptote $(y=m x+n)$

## 5. Asymptote (2)



Vertical Asymptote


## 5. Asymptote (3)

$>$ The rational function, $\mathrm{f}(\mathrm{x})=\mathrm{p}(\mathrm{x}) / \mathrm{q}(\mathrm{x})$ has an asymptote
$\Rightarrow$ A line $x=a$ is called a vertical asymptote for the graph of $f(x)$ if $f(x) \rightarrow \pm \infty$ as $x \rightarrow a$ (from the left or the right)
$>$ A line $y=b$ is called a horizontal asymptote for the graph of $f(x)$ if $f(x) \rightarrow b$ as $x \rightarrow \pm \infty$

## Vertical Asymptote

- Let $f(x)=p(x) / q(x)$
- The vertical asymptote of $f(x)$ can be found from the $x$-intercepts of $q(x)$
- Examples :

1. $f(x)=2 x /(x-3)$
2. $f(x)=(x-1) /\left(x^{2}-4\right)$
3. $f(x)=2+3 / x-1 / x^{3}$
4. $f(x)=\left(x^{2}-1\right) /\left(x^{2}-2 x-3\right)$

## Horizontal Asymptote

- Let $f(x)=p(x) / q(x)$
- The horizontal asymptote of $f(x)$ can be found from computing of $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ If either limit has the finite value $b$ then the line $y$ $=\mathrm{b}$ is a horizontal asymptote
- Examples :

1. $f(x)=2 x /(x-3)$
2. $f(x)=2+3 / x-1 / x^{3}$
3. $f(x)=\frac{2 x}{\sqrt{9 x^{2}-1}}$

## Oblique Asymptote

$\square$ If $f(x)=p(x) / q(x)$ is such that the degree of the numerator exceeds the degree of the denominator by one, then the graph of $f(x)$ has an oblique asymptote
$\square$ Examples:

$$
\begin{aligned}
& \text { 1. } f(x)=\left(x^{2}-1\right) /(x+2) \\
& \text { 2. } f(x)=x^{3} /\left(x^{2}-2 x-3\right)
\end{aligned}
$$

$\square$ This rational function can be written as :
$f(x)=(m x+n)+r(x) / q(x)$ and $y=m x+n$ is an oblique asymptote
$\square i f$ the rational function has an oblique asymptote then it has not a horizontal asymptote and its contrary

## The graph of the function

- Let $f(x)$ is polynomial function, $f(x)=a_{0}+a_{1} x+$ $a_{2} x^{2}+\ldots$
- If we will sketch this graph then we must find 1. The $x$-intercept of $f(x)$ and $y$-intercept of $f(x)$

2. The interval of monotonic and extreme points
3. The interval of concavity and inflection points

- If we will sketch the graph of the rational function, $f(x)=p(x) / q(x)$ then we must find the asymptote ( vertical, horizontal or oblique)


## Problems

- Sketch the graph of this polynomial functions :

1. $f(x)=x^{3}+3 x^{2}+5$
2. $f(x)=x^{4}-2 x^{2}-12$
3. $f(x)=x^{5}-4 x^{4}+4 x^{3}$

- Sketch the graph of rational functions:

4. $f(x)=(1-x) / x^{2}$
5. $f(x)=(x-1) /\left(x^{2}-4\right)$
6. $f(x)=\left(x^{2}-2 x-3\right) /(x+2)$



## L'hopital Rule (1)

- Indeterminate forms of limit are $\frac{0}{-}, \frac{\infty}{\infty}, 0 . \infty, \infty-\infty$
- This forms can be solved by L'hopitå Rule

1) Let $\lim f(x)=\lim g(x)=0$. Then $\lim f(x) / g(x)=\lim$ $f^{\prime}(x) / g^{\prime}(x)$
2) Let $\lim f(x)=\lim g(x)=\infty$. Then $\lim f(x) / g(x)=\lim$ $f^{\prime}(x) / g^{\prime}(x)$
3) Let $\lim f(x)=0$ and $\lim g(x)=\infty$. Then $\lim f(x) g(x)$ can be written as $\lim f(x) g(x)=\lim f(x) /[1 / g(x)]$ with the form $0 / 0$ or $\lim f(x) g(x)=\lim g(x) /[1 / f(x)]$ with the form $\infty / \infty$.
4) Let $\lim f(x)=\infty$ and $\lim g(x)=\infty$. Then $\lim [f(x)-$ $\mathrm{g}(\mathrm{x})$ ] can be rearranged into the form $0 / 0$ or $\infty / \infty$

## L'hopital Rule (2)

## Find the limits

1. $\lim _{x \rightarrow 0} \frac{x-\sin x}{2-2 \cos x}$
2. $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}-3 x}-\sqrt{x^{2}-3}\right)$
3. $\lim _{x \rightarrow+\infty} \frac{2 x+1}{2-5 x}$
4. $\lim _{x \rightarrow 0} 2 x \csc x$
5. $\lim _{x \rightarrow 0} \cot 2 x(1-\cos 2 x)$
6. $\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}+x}-x\right)$

## Solving Some applied optimization problems

- Step \# 1 : draw an appropriate figure and label the quantities relevant to the problem
- Step \# 2 : find the formula for the quantity to be maximized or minimized
- Step \# 3 : express the quantity as a function of one variable
- Step \# 4 : find the interval of monotonic to obtain the maximum or minimum.


## Problems

1. Express the number 100 as a sum of two nonnegative terms whose product is as large as possible
2. How should two nonnegative numbers be chosen so that their sum is 1 and the sum of their squares is as small as possible?
3. Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of radius 10 cm
4. A rectangle has its two lower corner on the $x$-axis and its two upper corner on the curve $y=16-x^{2}$. For all such rectangles, what are the dimension of the one with largest area ?

Thank You!

